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Abstract

Inthis paper, by using Cheng—Yau'’s self-adjoint operatowe study the space-like submanifolds
in the de Sitter spaces and obtain some general rigidity results. © 2002 Elsevier Science B.V. All
rights reserved.

MSC:53C40; 53C42; 53C50
Subj. Class.Differential geometry; General relativity

Keywords:Space-like submanifold; de Sitter space; Totally umbilical submanifold

1. Introduction

Let M, P (c) be an(n + p)-dimensional connected semi-Riemannian manifold of con-
stant curvature whose index isp. It is called an indefinite space form of indexand
simply a space form whep = 0. If ¢ > 0, we call it as a de Sitter space of indexdenote
it by S;’,“’ (¢). The study of space-like hypersurfaces in de Sitter space has been recently
of substantial interest from both physics and mathematical point of view. Akutagawa [2]
and Ramanathan [15] investigated space-like hypersurfaces in a de Sitter space and proved
independently that a complete space-like hypersurface in a de Sitter space with constant
mean curvature is totally umbilical if the mean curvatéfesatisfiesH? < ¢ whenn = 2
andn?H? < 4(n — 1)c whenn > 3. Later, Cheng [5] generalized this result to general
submanifolds in a de Sitter space.

On the other hand, Cheng and Ishikawa [6] have recently shown that the totally umbilical
round spheres are the only compact space-like hypersurfaﬁ‘.?élim) with constant scalar
curvatureS < n(n — 1). Some other authors, such as Ximin [11] and Zheng [16,17], have
also obtained interesting results related to the characterization of the totally umbilical round
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spheres as the only compact space-like hypersurfaces in the de Sitter space with constant
scalar curvature.

In [10], Li studied the Cheng-Yau’s self-adjoint operatofor a given codazzi tensor
fieldp = >, ;¢jwiw; on ann-dimensional compact Riemannian manifold and obtain a
general rigidity theorem which generalized Cheng—Yau's work [8]. By using this result he
studied the space-like hypersurfaces in Lorentzian space form and obtained some rigidity
theorems which naturally generalize the existing results of Akutagawa [2], Cheng and Yau
[7], Ramanathan [15] and Montiel [12] about Goddard’s conjecture [9].

In the present paper, we would like to use Cheng—Yau'’s self-adjoint opé&ratmstudy
the space-like submanifolds in de Sitter space and obtain some general rigidity results.

2. Cheng-Yau’'s self-adjoint operator]

In this section, we review the fundamental results about the Cheng—Yau'’s self-adjoint
operatoi], for details see [10].

Let M" be amm-dimensional Riemannian manifole, . . ., ¢, alocal orthonormal frame
field onM™, and letws, ..., w, be its dual coframe field. Then, the structure equations of
M" are given by

doj = Y wij Awj,  wj +oj =0, 1)
J

dwjj = Wik N wkj — } Rijiwr A wy, (2)
k 2 k.l

wherewjj is the Levi-Civita connection form anilj are the components of the curvature
tensor ofM™".

For any C?-function f defined onM”, we defined its gradient and Hessian by the
following formulas:

df =Y o, 3)

Y fiwj =dfi+ ) fiwj. 4)
J J
Letg = ) j¢ijwi ® w; be a symmetric tensor defined 8f". The covariant derivative
of ¢jj is defined by
Z¢ijk0)k = dojj + Z¢kjwki + Z¢ika)kj- 5)
k k k

We call the symmetric tens@r =}, ;¢jjw; ® w; a Codazzi tensor ik = ;.
The second covariant derivative @f is defined by

Z¢ijk| w; = deijk + Z¢mjkwmi + Z¢imkwmj + Z¢ijmwmk- (6)

l
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Then, we have the following Ricci identities:
ikl — Pk = Y_dmiRmiki + Y_pimRmjid- (7)
m m
The definition of the following self-adjoint operatamwas first introduced by Cheng—Yau

in [8].

Definition 2.1. Let¢ = 3, ;o; ® w; be a Codazzi tensor field on a Riemanian manifold
M". We define the operatal associated t¢ by

Of=) <<Z¢kk) 8ij — ¢ij> fi )
ij k

for any C2-function f defined onM™.

The Laplaciam¢j; of the tensow;j is defined to bé , ¢ijk, and we have [10]:

Agjj = (Zd)kk) + ) dmkRmik + Y_imRmkik 9)
K

ij m,k m,k

Let|p|?> =3, ;¢F, IVoI* = Z,.)j,k%?k and trg = Y, ¢uk. Then, from (9) we have
1
SOIB1E = Vo2 + D it o)i+ 3 didmiRmik+ Y didimRmi  (10)
i,j i,j,m,k i,j,m,k
Near a given poinp € M", we choose a local orthonormal frame fi¢dd, .. ., ¢,} and
its dual frame fieldws, . . ., w,} such thatp = Z[’/(ﬁij w; ® wj, dij = A;8jj at p. Then (10)
is simplified to '

1 1
OS2 = V1% + 3 it i+ 5D Riij (i = 2% (11)
i i,]
Denoting the second symmetric functionggf by m, we have
m=Y Ahj=(r$)*— > (12)
i#j

From (11) and (12), we have
1 1 1
SAMrg)° = SAm + Vo[ + IZM (tr ¢)i + E;Rijij (hi — A2 (13)
From (13) and (8), we have

1 1
Otr §) = > Am + IVo|2 — |V(tr o) |* + EZRW (i — 22 (14)
inj
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Sincel is self-adjoint and” is compact, we obtain by integration of (14)
1
[IV$[2 = [V (tr )2 +/ =3 R i — A2 = 0. (15)
M71 M)l 2 ly]

So we have the following theorem.

Theorem 2.1(Li [10]). Let¢ =, j0i ® wj be a Codazzi tensor field on a Riemanian
manifoldM™. We assume the foIIowmg condition:

Vo[> = |V(trg)>. (16)

1. If M" has positive sectional curvature, then all the eigenvalues;jadre the same on
M".
2. If M" has non-negative sectional curvature, then we hgweg|2 = |V(tr¢)|? and
Rijij = 0,when; # A; on M".

Okumuru [14] established the following lemma (see also [3]).

Lemma2.1. Letu;,i = 1,...,n, be real numbers such th3t,; u; = 0and ;2 = g2,
whereg = constant> 0. Then

3 n—2 3
T <2 = e "

and the equality holds i(iL7) if and only if at leasin — 1) of theu; are equal

3. Space-like submanifolds in de Sitter space

Let M" be amm-dimensional space-like submanifoIdSﬁ”(c). We choose a local field

of semi-Riemannian orthonormal frames .. ., e, in SZ”’(c) such that at each point
of M" ey, ..., e, span the tangent spaceMf' and form an orthonormal frame there. We
use the following convention on the range of indices:

1<A,B,C,...<n+p, 1<i,j,k,...<n, n+l<a B,y <n+p.

Letwy, ..., wuqp bE |ts dual frame field so that the semi-Riemannian metrlspéf"(c)
is given by 4?2 =Y 0 = Y eawd, wheree; = 1 ande, = —1. Then, the
structure equations csf'f” (c) are glven by
doa =) epwag Awp, was+wpa=0, (18)
B
dwag = ) ecwac A wc — 1 Kagcpwe A wp, (19)
2

C C,D
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KacD = cea€p(8AcdBD — ADSBC)- (20)

Restricting these forms t", we have

wy=0, n+l<a=<n+p. (22)
From Cartan’s lemma, we can write
wui = Y hwj,  hi =hf. (22)
J
From these formulas, we obtain the structure equationg’of
doy = ) wj Awj. o +wj =0, (23)
J
da)ij = Wik N wkj — } Rijkiwx A oy, (24)
2
k k.l
Rij = c(Sidji — 8itdj) — Y (highs] — hifhf), (25)

o

whereR;jq are the components of the curvature tensav/éfand

h = Zhaea = Zhﬁa)i Qw;® ey (26)
o i,j,o
is the second fundamental form uf".
For indefinite Riemannian manifolds in detail, refer to O’Neill [13].
DenoteLy = (hf),xn andHy = (1/n)) ;hf fora =n+1,...,n+ p. Then, the mean
curvature vector field, the mean curvatur® and the square of the length of the second
fundamental forn® are expressed as

£=) Hpey, H=E, S=) ()% (27)
o a,i,j

respectively. Moreover, the normal curvature ter{3tyz} and the normalized scalar cur-
vatureR are expressed as

1
Ropia = D _(h&pb —nhly. R=c+ s {Che n2H?). (28)
m

If Repii = O at pointx of M", we say that the normal connectiondf is flat atx and it is
well known [4] thatR, gk = O atx if and only if , are simultaneously diagonalizablexat
SupposeH > 0 onM" and choose,,+1 = &/H. Then, it follows that

H,+1=H, Hy=0, a>n+1 (29)
Suppose that the normal bundleMt is flat, then we can chooss, ..., ¢, such that

hﬁ‘:)\?Sij, a=n+1...,n+p. (30)
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Let ¢ij = hff. From (15) we have

1
[IVhI? = n?|VH?] +/ > 2 Rii G =25 =0
M" % ja

M

By using the Gauss equation, we have

ZRuu ()\,n-i-l A”+1)2 =nNncS+1 — n2H% + Sn+1 nHZ(A;’+1)3,
l] -

whereS, 11 =Y, ](h”“)z
+1 +1 2 _ +1y2
Letp!™ =A'"" — H and|Z|* = )_;(u;")*. We have

Z’un-‘rl 0’ |Z|2 — Sn+l — nHZ,

Z()\'n+l)3 Z(M}’l+l)3+3le| 3’
Putting (33) and (34) into (32), we get

ZRU'] ()“n-i-l )\‘n-i-l)z |Z| (nc nHZ + |Z|2) nHZ(Mn-‘,-l)S
l] ;

By using Lemma 2.1, we have

1
EZRijij Ay — ?»‘}‘)2
i,j

_2
> (Sui1 — NH2) (nc— 2NHZ 4 Spp1 — %H,/SHH . nH2> .

Putting (36) into (31), we have
[ [avn? = w219 HP) 4 (5,01 = kD)
MH
(n—2)
nC—2nH2 + Spuq — "2 /s — nHZ)] <0.
X ( +1 nn=1 =

Note that

nn—2
nc—2nH? + S,41 — \/%H,/Swl — nH2

1 n 2 n?
N _nH2 4 Z(n — [_ % _ 2
= ( Sp+1 — NHA + 2(n 2)H n_1> +n <c 4(n—1)H )

From (37) and (38), we have the following theorem.

375
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Theorem 3.1. Let M" be anr-dimensional compact space-like submanifold in(ant+
p)-dimensional de Sitter spad§+”(c). Suppose tha1” has flat normal bundle, if

|Vh|? > n?|VH|? (39)
and

H? < 4

(n—1c

2 (40)

n

thens, 1 = nH2 and M” is a pseudo-umbilical submanifold

Corollary 3.1. Let M" be ann-dimensional compact space-like submanifold with constant
scalar curvaturer in an (n + p)-dimensional de Sitter spac3§}+” (¢). Suppose that"
has flat normal bundle, iR — ¢ < 0and

(n—1c

2
He <4 2

(41)
thensS, 1 = nH2 and M” is a pseudo-umbilical submanifold

Proof. From (28), we havei?H? — S = n(n — 1)(c — R) > 0. Taking the covariant
derivative on both sides of this equality, we get

nZHHk=Zhﬁ ﬁ[k’ k=1,...,n

ij.a

For everyk, it follows from Cauchy—Schwarz’s inequality that

2
n*H2H? = (Zhﬁf ﬁ‘k) < SZW (42)

i,j,a i,j.a

Taking sum on both sides of (42) with respeckiave have

n*H?|\VH|? = 4H22Hk <S>y (huk) <n’H? ) (h”k (43)
@, j.k,a) @,j,k,a)
i.e.|Vh|? > n?|VH|?, then Corollary 3.1 follows from Theorem 3.1. O

Now consider the quadratic forr@(u, 1) = u? — ((n — 2)/+/n — Lyut — r2. By the
orthogonal transformation

\/i—{(l—i—vn —Du+@Q—-+vn—-1D},

=\/—_{(\/n— —Du+ (Vn—1+ Dt}

O(u, 1) turns intoQ(u, t) = (n/2v/n — 1)(it? — 2), wherei? + 2 = u? + 2.

u
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Takeu = v/Sp41,t = /nH, then

S _
nc—nH2 —n(n — 2H,| — 1 5,01 = nc+ Ou, 1)
nn—1)
n(i? — 12 n(—i? — 12 nii? nSpi1
=Nnc+ ——— =nc+ + >nc— ————. 44
2vn —1 2vn—1 n—1 2vn—1 (44)

From (44) and (37) we have

(45)

Spt1 — NH?
0= | (VA= n?|VH) + (Sp41 — nH) [nc_ M} .
mMn

2vn —1

Therefore, we have the following theorem.

Theorem 3.2. Let M" (n > 3) be a compact space-like submanifold in the de Sitter space
Sy 7P (c). Suppose thath|? > n?|VH|2. If M" has flat normal bundle and

Spa1 < nH? + 2/n — 1c, (46)
thens, 1 = nH? and M" is a pseudo-umbilical submanifold
Theorem 3.3. Let M" be ann-dimensional compact space-like submanifold with constant
scalar curvature and with non-negative sectional curvatursin’ (c). Suppose that™
has flat normal bundle, if the normalized mean curvature vector is parallelrasatisfies
R < ¢, thenM" is totally umbilical
Proof. We have from (28),

n?H? — ||h]|” = n(n = 1)(c - B), (47)

whereR is the normalized scalar curvature ®f’. Taking the covariant derivative of (47)
and using the fact that = constant, we obtain

n®HH, = > "he - ki,
i,j,a
and hence by Cauchy—-Schwarz inequality, we have
2

SontHAHD? = 30| Soh g | = o D o’
k

k i,j,a i,j,a i,j,k,a
that is
n*H?|VH|?> < |k - | VA|?. (48)
From (31) and (48), we have

— 1 o o
0> fw 11720300 = D(e = RIIVHI? + 5 Ry G =27 1 (49)

i,j,a
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Thus, by hypothesig,V H |2 = 0, soH is constant o/”. Therefore, Theorem 3.3 follows
from a result of Aiyama [1] and this completes the proof of Theorem 3.3. O
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