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Abstract

In this paper, by using Cheng–Yau’s self-adjoint operator�, we study the space-like submanifolds
in the de Sitter spaces and obtain some general rigidity results. © 2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Let Mn+p
p (c) be an(n + p)-dimensional connected semi-Riemannian manifold of con-

stant curvaturec whose index isp. It is called an indefinite space form of indexp and
simply a space form whenp = 0. If c > 0, we call it as a de Sitter space of indexp, denote
it by S

n+p
p (c). The study of space-like hypersurfaces in de Sitter space has been recently

of substantial interest from both physics and mathematical point of view. Akutagawa [2]
and Ramanathan [15] investigated space-like hypersurfaces in a de Sitter space and proved
independently that a complete space-like hypersurface in a de Sitter space with constant
mean curvature is totally umbilical if the mean curvatureH satisfiesH 2 ≤ c whenn = 2
andn2H 2 < 4(n − 1)c whenn ≥ 3. Later, Cheng [5] generalized this result to general
submanifolds in a de Sitter space.

On the other hand, Cheng and Ishikawa [6] have recently shown that the totally umbilical
round spheres are the only compact space-like hypersurfaces inSn+1

1 (1)with constant scalar
curvatureS < n(n − 1). Some other authors, such as Ximin [11] and Zheng [16,17], have
also obtained interesting results related to the characterization of the totally umbilical round
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spheres as the only compact space-like hypersurfaces in the de Sitter space with constant
scalar curvature.

In [10], Li studied the Cheng–Yau’s self-adjoint operator� for a given codazzi tensor
field φ = ∑

i,j φijωiωj on ann-dimensional compact Riemannian manifold and obtain a
general rigidity theorem which generalized Cheng–Yau’s work [8]. By using this result he
studied the space-like hypersurfaces in Lorentzian space form and obtained some rigidity
theorems which naturally generalize the existing results of Akutagawa [2], Cheng and Yau
[7], Ramanathan [15] and Montiel [12] about Goddard’s conjecture [9].

In the present paper, we would like to use Cheng–Yau’s self-adjoint operator� to study
the space-like submanifolds in de Sitter space and obtain some general rigidity results.

2. Cheng–Yau’s self-adjoint operator�

In this section, we review the fundamental results about the Cheng–Yau’s self-adjoint
operator�, for details see [10].

LetMn be ann-dimensional Riemannian manifold,e1, . . . , en a local orthonormal frame
field onMn, and letω1, . . . , ωn be its dual coframe field. Then, the structure equations of
Mn are given by

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0, (1)

dωij =
∑
k

ωik ∧ ωkj − 1

2

∑
k,l

Rijklωk ∧ ωl, (2)

whereωij is the Levi-Civita connection form andRijkl are the components of the curvature
tensor ofMn.

For anyC2-function f defined onMn, we defined its gradient and Hessian by the
following formulas:

df =
∑
i

fiωi, (3)

∑
j

fijωj = dfi +
∑
j

fjωji . (4)

Let φ = ∑
ijφijωi ⊗ ωj be a symmetric tensor defined onMn. The covariant derivative

of φij is defined by∑
k

φijkωk = dφij +
∑
k

φkjωki +
∑
k

φikωkj. (5)

We call the symmetric tensorφ = ∑
i,j φijωi ⊗ ωj a Codazzi tensor ifφijk = φikj .

The second covariant derivative ofφij is defined by∑
l

φijklωl = dφijk +
∑
m

φmjkωmi +
∑
m

φimkωmj +
∑
m

φijmωmk. (6)



372 L. Ximin / Journal of Geometry and Physics 40 (2002) 370–378

Then, we have the following Ricci identities:

φijkl − φijlk =
∑
m

φmjRmikl +
∑
m

φimRmjkl. (7)

The definition of the following self-adjoint operator� was first introduced by Cheng–Yau
in [8].

Definition 2.1. Let φ = ∑
i,jωi ⊗ ωj be a Codazzi tensor field on a Riemanian manifold

Mn. We define the operator� associated toφ by

�f =
∑
i,j

((∑
k

φkk

)
δij − φij

)
fij (8)

for anyC2-functionf defined onMn.

The Laplacian�φij of the tensorφij is defined to be
∑

kφijkk, and we have [10]:

�φij =
(∑

k

φkk

)
ij

+
∑
m,k

φmkRmijk +
∑
m,k

φimRmkjk (9)

Let |φ|2 = ∑
i,j φ

2
ij , |∇φ|2 = ∑

i,j,kφ
2
ijk and trφ = ∑

kφkk. Then, from (9) we have

1

2
�|φ|2 = |∇φ|2 +

∑
i,j

φij (tr φ)ij +
∑

i,j,m,k

φijφmkRmijk +
∑

i,j,m,k

φijφimRmkjk. (10)

Near a given pointp ∈ Mn, we choose a local orthonormal frame field{e1, . . . , en} and
its dual frame field{ω1, . . . , ωn} such thatφ = ∑

i,j φijωi ⊗ωj , φij = λiδij atp. Then (10)
is simplified to

1

2
�|φ|2 = |∇φ|2 +

∑
i

λi(tr φ)ii + 1

2

∑
i,j

Rijij (λi − λj )
2. (11)

Denoting the second symmetric function ofφij bym, we have

m =
∑
i =j

λiλj = (tr φ)2 − |φ|2. (12)

From (11) and (12), we have

1

2
�(tr φ)2 = 1

2
�m + |∇φ|2 +

∑
i

λi(tr φ)ii + 1

2

∑
i,j

Rijij (λi − λj )
2. (13)

From (13) and (8), we have

�(tr φ) = 1

2
�m + |∇φ|2 − |∇(tr φ)|2 + 1

2

∑
i,j

Rijij (λi − λj )
2. (14)
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Since� is self-adjoint andMn is compact, we obtain by integration of (14)∫
Mn

[|∇φ|2 − |∇(tr φ)|2] +
∫
Mn

1

2

∑
i,j

Rijij (λi − λj )
2 = 0. (15)

So we have the following theorem.

Theorem 2.1(Li [10]). Let φ = ∑
i,jωi ⊗ ωj be a Codazzi tensor field on a Riemanian

manifoldMn. We assume the following condition:

|∇φ|2 ≥ |∇(tr φ)|2. (16)

1. If Mn has positive sectional curvature, then all the eigenvalues ofφij are the same on
Mn.

2. If Mn has non-negative sectional curvature, then we have|∇φ|2 = |∇(tr φ)|2 and
Rijij = 0, whenλi = λj onMn.

Okumuru [14] established the following lemma (see also [3]).

Lemma 2.1. Letµi , i = 1, . . . , n, be real numbers such that
∑

iµi = 0 and
∑

iµ
2
i = β2,

whereβ = constant≥ 0. Then

− n − 2√
n(n − 1)

β3 ≤
∑
i

µ3
i ≤ n − 2√

n(n − 1)
β3, (17)

and the equality holds in(17) if and only if at least(n − 1) of theµi are equal.

3. Space-like submanifolds in de Sitter space

LetMn be ann-dimensional space-like submanifold inSn+p
p (c). We choose a local field

of semi-Riemannian orthonormal framese1, . . . , en+p in S
n+p
p (c) such that at each point

of Mn, e1, . . . , en span the tangent space ofMn and form an orthonormal frame there. We
use the following convention on the range of indices:

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ α, β, γ ≤ n + p.

Let ω1, . . . , ωn+p be its dual frame field so that the semi-Riemannian metric ofS
n+p
p (c)

is given by d̄s2 = ∑
iω

2
i − ∑

αω
2
α = ∑

AεAω
2
A, whereεi = 1 andεα = −1. Then, the

structure equations ofSn+p
p (c) are given by

dωA =
∑
B

εBωAB ∧ ωB, ωAB + ωBA = 0, (18)

dωAB =
∑
C

εCωAC ∧ ωCB − 1

2

∑
C,D

KABCDωC ∧ ωD, (19)
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KABCD = cεAεB(δACδBD − δADδBC). (20)

Restricting these forms toMn, we have

ωα = 0, n + 1 ≤ α ≤ n + p. (21)

From Cartan’s lemma, we can write

ωαi =
∑
j

hαijωj , hαij = hαji . (22)

From these formulas, we obtain the structure equations ofMn:

dωi =
∑
j

ωij ∧ ωj , ωij + ωji = 0, (23)

dωij =
∑
k

ωik ∧ ωkj − 1

2

∑
k,l

Rijklωk ∧ ωl, (24)

Rijkl = c(δikδjl − δil δjk) −
∑
α

(hαikh
α
jl − hαil h

α
jk), (25)

whereRijkl are the components of the curvature tensor ofMn and

h =
∑
α

hαeα =
∑
i,j,α

hαijωi ⊗ ωj ⊗ eα (26)

is the second fundamental form ofMn.
For indefinite Riemannian manifolds in detail, refer to O’Neill [13].
DenoteLα = (hαij )n×n andHα = (1/n)

∑
ih

α
ii for α = n+1, . . . , n+p. Then, the mean

curvature vector fieldξ , the mean curvatureH and the square of the length of the second
fundamental formS are expressed as

ξ =
∑
α

Hαeα, H = |ξ |, S =
∑
α,i,j

(hαij )
2, (27)

respectively. Moreover, the normal curvature tensor{Rαβkl} and the normalized scalar cur-
vatureR are expressed as

Rαβkl =
∑
m

(hαkmh
β

ml − hαlmh
β

mk), R = c + 1

n(n − 1)
(S − n2H 2). (28)

If Rαβkl = 0 at pointx of Mn, we say that the normal connection ofMn is flat atx and it is
well known [4] thatRαβkl = 0 atx if and only ifhα are simultaneously diagonalizable atx.

SupposeH > 0 onMn and chooseen+1 = ξ/H . Then, it follows that

Hn+1 = H, Hα = 0, α > n + 1. (29)

Suppose that the normal bundle ofMn is flat, then we can choosee1, . . . , en such that

hαij = λαi δij , α = n + 1, . . . , n + p. (30)
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Let φij = hαij . From (15) we have∫
Mn

[|∇h|2 − n2|∇H |2] +
∫
Mn

1

2

∑
i,j,α

Rijij (λ
α
i − λαj )

2 = 0. (31)

By using the Gauss equation, we have

1

2

∑
i,j

Rijij (λ
n+1
i − λn+1

j )2 = ncSn+1 − n2H 2c + S2
n+1 − nH

∑
i

(λn+1
i )3, (32)

whereSn+1 = ∑
i,j (h

n+1
ij )2.

Letµn+1
i = λn+1

i − H and|Z|2 = ∑
i (µ

n+1
i )2. We have∑

i

µn+1
i = 0, |Z|2 = Sn+1 = nH2, (33)

∑
i

(λn+1
i )3 =

∑
i

(µn+1
i )3 + 3H |Z|2 − nH3, (34)

Putting (33) and (34) into (32), we get

1

2

∑
i,j

Rijij (λ
n+1
i − λn+1

j )2 = |Z|2(nc− nH2 + |Z|2) − nH
∑
i

(µn+1
i )3. (35)

By using Lemma 2.1, we have

1

2

∑
i,j

Rijij (λ
α
i − λαj )

2

≥ (Sn+1 − nH2)

(
nc− 2nH2 + Sn+1 − n(n − 2)√

n(n − 1)
H

√
Sn+1 − nH2

)
. (36)

Putting (36) into (31), we have∫
Mn

[
(|∇h|2 − n2|∇H |2) + (Sn+1 − nH2)

×
(

nc− 2nH2 + Sn+1 − n(n − 2)√
n(n − 1)

H
√
S − nH2

)]
≤ 0. (37)

Note that

nc− 2nH2 + Sn+1 − n(n − 2)√
n(n − 1)

H

√
Sn+1 − nH2

=
(√

Sn+1 − nH2 + 1

2
(n − 2)H

√
n

n − 1

)2

+ n

(
c − n2

4(n − 1)
H 2
)
. (38)

From (37) and (38), we have the following theorem.
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Theorem 3.1. Let Mn be ann-dimensional compact space-like submanifold in an(n +
p)-dimensional de Sitter spaceSn+p

p (c). Suppose thatMn has flat normal bundle, if

|∇h|2 ≥ n2|∇H |2 (39)

and

H 2 < 4
(n − 1)c

n2
, (40)

thenSn+1 ≡ nH2 andMn is a pseudo-umbilical submanifold.

Corollary 3.1. LetMn be ann-dimensional compact space-like submanifold with constant
scalar curvatureR in an (n + p)-dimensional de Sitter spaceSn+p

p (c). Suppose thatMn

has flat normal bundle, ifR − c ≤ 0 and

H 2 < 4
(n − 1)c

n2
, (41)

thenSn+1 ≡ nH2 andMn is a pseudo-umbilical submanifold.

Proof. From (28), we haven2H 2 − S = n(n − 1)(c − R) ≥ 0. Taking the covariant
derivative on both sides of this equality, we get

n2HHk =
∑
i,j,α

hαij h
α
ijk, k = 1, . . . , n.

For everyk, it follows from Cauchy–Schwarz’s inequality that

n4H 2H 2
k =


∑

i,j,α

hαij h
α
ijk




2

≤ S
∑
i,j,α

(hαijk)
2. (42)

Taking sum on both sides of (42) with respect tok, we have

n4H 2|∇H |2 = n4H 2
∑
k

H 2
k ≤ S

∑
(i,j,k,α)

(hαijk)
2 ≤ n2H 2

∑
(i,j,k,α)

(hαijk)
2, (43)

i.e. |∇h|2 ≥ n2|∇H |2, then Corollary 3.1 follows from Theorem 3.1. �

Now consider the quadratic formQ(u, t) = u2 − ((n − 2)/
√
n − 1)ut − t2. By the

orthogonal transformation

ū= 1√
2n

{(1 + √
n − 1)u + (1 − √

n − 1)t},

t̄ = 1√
2n

{(√n − 1 − 1)u + (
√
n − 1 + 1)t}.

Q(u, t) turns intoQ(u, t) = (n/2
√
n − 1)(ū2 − t̄2), whereū2 + t̄2 = u2 + t2.
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Takeu =
√
S̄n+1, t = √

nH , then

nc− nH2 − n(n − 2)H

√
S̄n+1

n(n − 1)
+ S̄n+1 = nc+ Q(u, t)

= nc+ n(ū2 − t̄2)

2
√
n − 1

= nc+ n(−ū2 − t̄2)

2
√
n − 1

+ nū2

√
n − 1

≥ nc− nS̄n+1

2
√
n − 1

. (44)

From (44) and (37) we have

0 ≥
∫
Mn

(|∇h|2 − n2|∇H |2) + (Sn+1 − nH2)

[
nc− n(Sn+1 − nH2)

2
√
n − 1

]
. (45)

Therefore, we have the following theorem.

Theorem 3.2. LetMn(n ≥ 3) be a compact space-like submanifold in the de Sitter space
S
n+p
p (c). Suppose that|∇h|2 ≥ n2|∇H |2. If Mn has flat normal bundle and

Sn+1 < nH2 + 2
√
n − 1c, (46)

thenSn+1 = nH2 andMn is a pseudo-umbilical submanifold.

Theorem 3.3. LetMn be ann-dimensional compact space-like submanifold with constant
scalar curvature and with non-negative sectional curvature inS

n+p
n (c). Suppose thatMn

has flat normal bundle, if the normalized mean curvature vector is parallel andR satisfies
R < c, thenMn is totally umbilical.

Proof. We have from (28),

n2H 2 − ‖h‖2 = n(n − 1)(c − R), (47)

whereR is the normalized scalar curvature ofMn. Taking the covariant derivative of (47)
and using the fact thatR = constant, we obtain

n2HHk =
∑
i,j,α

hαij · hαijk,

and hence by Cauchy–Schwarz inequality, we have

∑
k

n4H 2(Hk)
2 =

∑
k


∑

i,j,α

hαij · hαijk




2

≤
∑
i,j,α

(hαij )
2 ·

∑
i,j,k,α

(hαijk)
2,

that is

n4H 2‖∇H‖2 ≤ ‖h‖2 · ‖∇h‖2. (48)

From (31) and (48), we have

0 ≥
∫
Mn


‖h‖−2n3(n − 1)(c − R)‖∇H‖2 + 1

2

∑
i,j,α

Rijij (λ
α
i − λαj )

2


 . (49)
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Thus, by hypothesis,‖∇H‖2 = 0, soH is constant onMn. Therefore, Theorem 3.3 follows
from a result of Aiyama [1] and this completes the proof of Theorem 3.3. �
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